Genetic Differentiation among Iranian Christian Communities

M. T. AKBARI,¹ S. S. PAPIHA,² D. F. ROBERTS,³ AND D. D. FARHUD⁴

Received May 18, 1984; revised June 13, 1985. American Journal of Human Genetics, 38:84-98, 1986

SUMMARY

From some 500 members of Christian communities in Iran (Armenians and Assyrians from six localities), blood specimens were obtained and examined for a number of blood group, red cell enzyme, and serum protein systems. The results indicate the relatively closed nature of the Christian community as a whole but that moderate differentiation has already occurred among the local groups. One factor in this diversification process that can be distinguished is the effect of urbanization in Tehran, but otherwise it seems to be largely random.

INTRODUCTION

Among the present-day ethnic composition of Iran, two Christian populations-the Armenians and the Assyrians-represent distinct religious minorities. These groups are widespread, with concentrations in various regions both in Iran and in the neighboring countries. Historically, there were movements of the Christian population under the pressure of Muslim and other invading groups, but due to their religious and cultural traditions, there has been little intermixture with other populations.

Genetic knowledge of the Iranian Armenians and Assyrians is limited to a few blood group systems [1-3]. Some of the systems studied demonstrated clear genetic differences between the Christians and the rest of the population of Iran. The known historical movement and settlement of these Christian groups in Iran provides an excellent background against which to study the genetic differentiation among their various regional subgroups. The present investigation of Iranian Christians therefore extends genetic information to include some of the systems that have not yet been studied and also examines the genetic differentiation and structure of the populations.

Armenians

The Armenians once occupied a large part of the area now known as Turkey, formerly the seat of the Hittite Empire. Their spread and contact with European civilization was promoted with the conquests of Alexander the Great when the Armenians became part of the newly formed Macedonian Empire. The Armenians accepted Christianity early, in 301 A.D. An influx of Armenians to Iran occurred in 1604 when Shah Abbas brought them as Christian captives from Jolfa (now in Soviet Armenia). Instead of being treated as slaves, they were encouraged to develop trade between east and west in Isfahan (then capital of Iran), which later intensified with the change of the capital to Tehran. According to the 1970 census of Iran, the Armenians were estimated at 200,000, living in four regions-Tehran, Isfahan, Tabriz, and Uromia.

Assyrians

The Assyrians are a group of Christians, also known as Nestorians, with a long history in the Middle East. From historical and archeological evidence, it is thought that their ancestors formed part of the Mesopotamian civilization. In the early part of this century, the Assyrians had to move into Iraq, where they were promised safety during World War I. A few years later, at the end of the war, most of them returned to Iran; some returned to Uromia, a rural settlement, their home area in Iran, but many went direct to Tehran where they formed their own urban community. In spite of these movements, the Assyrians kept themselves distinct socially.

Methods

From a total of 297 Armenians, blood samples were collected from Uromia, Tabriz, Isfahan, and Tehran (fig. 1). For Assyrians, 225 specimens were collected from Tehran and Uromia. Subjects were randomly selected, except that any close relatives were excluded. The blood grouping was performed in Tehran, and the plasma and red cell lysate samples were stored at -30°C until transported in dry ice to the Department of Human Genetics, Newcastle upon Tyne, where the electrophoretic studies were performed.

All specimens were tested with the following antisera: A, A₁, B, C, C^w, c, D, E, e, S, s, P₁, Le^a, Lu^a, Lu^b, K, k, Fy^a, Fy^b, and Jk^a. Red cell enzymes adenosine deaminase (ADA), esterase D (ESD), phosphoglucomutase I (PGM₁), adenylate kinase (AK), 6-phosphogluconate dehydrogenase (6PGD), and acid phosphatase (AP) were examined according to the methods listed in [4]. The serum protein complement component (C3), haptoglobin (Hp), and transferrin (Tf) were examined by the methods standard in this laboratory [5]. The gene frequencies were calculated by maximum likelihood and gene counting methods. The F-statistics of Wright were calculated from the diallelic loci for which the heterozygote was discernible. F_{IT} estimates were based on the heterozygote deficit or excess in the total population; F_{IS} the mean of the estimate from the heterozygote excess over subpopulations; and F_{ST} from F_{IT} and F_{1S} .

RESULTS

The phenotype frequencies in Armenians from Uromia, Tabriz, Tehran, and Isfahan, and Assyrians from Tehran and Uromia are given in table I and gene frequencies in table 2. In no system was there any deviation from Hardy-Weinberg equilibrium.

MAP OF IRAN SHOWING THE SITE OF SAMPLE COLLECTION

Fig 1.6 Geographical Location of Samples

Blood Groups

For the ABO system, the *A* gene frequency ranges in Armenians from 29% to 40% and in Assyrians from 26% to 33%. In neither Assyrians nor Armenians is there any regional genetic heterogeneity ($X^2 = 8.69$, d.f. = 9, NS, and $X^2 = 6.41$, d.f. = 3, NS, respectively), and there is no interethnic heterogeneity ($X^2 = 6.47$, d.f. = 4, NS). The slightly lower frequencies of the A₁ gene in Armenians and Assyrians of Tehran (29% and 27%, respectively) by comparison with those in the original rural settlements of Uromia (differences are at the expense of O genes since the B gene frequency varies little) suggests some intermixing in Tehran with the local urban communities in whom the A gene frequency is lower (22%).

 Table 1

 Distribution of blood group antigens, serum proteins, and red cell enzymes among different regional groups of Armenian and Assyrian Christians in Iran (x² tests deviation from Hardy-Weinberg equilibrium.

	ARM	ENIAN	ARM	ENIAN	ARM	ENIAN	ARM	ENIAN	ASS	YRIAN	ASS	YRIAN
	URO	OMIA	ТА	BRIZ	TEF	IRAN	ISFA	AHAN	TEI	IRAN	UR	OMIA
SYSTEM	No.	Frequency										
	observed	observed										
		%		%		%		%		%		%
Blood												
groups:												
ABO:												
0	11	15.9	13	20.0	28	33.3	22	27.8	24	31.6	29	19.5
В	7	10.1	6	9.2	10	11.9	7	8.9	15	19.7	22	14.8
A ₂	5	7.2	3	4.6	3	3.6	7	8.9	1	1.3	14	9.4
A ₁	38	55.1	36	55.4	37	44.0	36	45.6	32	42.1	75	50.3
A ₁ B	2	2.9	3	4.6	1	1.2	1	1.3	1	1.3	2	1.3
A ₂ B	6	8.7	4	6.2	5	6.0	6	7.5	3	3.9	7	4.7
Total	69		65		84		79		76		149	
X_2^2		0.29		4.54		.39		0.72		2.86		3.57
Rhesus:												
ccddee	8	11.6	3	4.6	10	11.9	6	7.6	8	8.7	11	7.4
ccdaEE	1	1.4									1	0.7
ccddEE	1	1.4										
ccDee	3	4.3	6	9.2	6	7.1	3	3.8	5	5.4	9	6.0
ccDEe	2	2.9	5	7.7	8	9.5	13	16.4	15	16.3	17	11.4
ccDEE	2	2.9	1	1.0	4	4.8	2	2.5			7	4.7
Ccddee	3	4.3	2	3.1	1	1.2	1	1.3	2	2.2	5	3.3
CcDee	23	33.3	23	35.4	31	36.9	32	40.5	24	26.1	43	28.9
CcDEe	6	8.7	11	16.9	12	14.3	12	15.2	10	10.9	10	6.7
CcDEE			1	1.5							1	0.7
Ccddee	1	1.5					1	1.3			5	3.3
CCDee	13	18.8	13	20.0	11	13.1	9	11.4	27	29.3	36	24.2
CCDEE												
CCDEe	3	4.4			1	1.2					1	0.7
$C^{W}CDee$	1	1.5										
$C^{W}cDee$	1	1.5										
$C^{W}cdee$	1	1.5										
Total	69		65		84		79		92		149	
X_4^2		0.219		0.776		0.876		4.5		4.55		7.48
Ss:												
SS	7	10.0	13	20.3	18	21.4	13	16.4	19	120.6	23	15.4
Ss	11	16.0	26	40.6	26	30.9	20	2~.3	30	32.6	33	22.1
SS	50	72.5	24	37.5	40	47.7	42	53.2	43	46.8	92	61.8
S-s-	1	1.5	1	1.6			4	5.1			1	0.7
												Y
	1	1	1	1	1	1	1	1	1	1	1	

Total	69		64		84		79		92		149	
	0.77		0.11		2.63		0.0		2.25		2.40	
P_1^{+}	32	46.3	27	41.5	40	47.6	44	56.4	54	58.7	76	51.0
P ₁ ⁻	37	53.7	38	58.5	44	52.4	34	43.6	38	41.3	73	49.0
Total	69		65		84		78		92		149	
Duffy:												
Fy^{a+b-}	22	31.9	18	18.1	19	2.6	20	25.3	22	25.3	41	27.5
Fy^{a+b+}	24	34.8	29	45.3	42	50.0	36	45.6	41	47.1	68	45.6
Fy^{a-b+}	22	31.9	15	23.4	22	26.2	20	25.3	24	27.6	39	26.2
Fy ^{a-b-}	1	1.4	2	3.1	1	1.2	3	3.8			1	0.7
Total	69		64		84		79		87		149	
X_{1}^{2}	0.2		2.66		2.72		4.42		0.06		0.47	
Lewis:												
Le^{a^+}	11	15.9			21	26.9			13	23.2	37	24.8
Le^{a-}	58	84.1			57	73.1			43	76.8	112	75.2
Total	69				78				56		149	
Lutheran:												
Lu^{a+b-}							1	1.3				
Lu^{a+b+}	1	1.4	5	7.8	7	8.3	2	2.5	4	4.5	4	2.7
Lu^{a-b+}	68	98.6	59	92.2	77	91.7	76	96.5	85	95.5	145	97.3
Total	69		64		84		79		89		149	
Kell:												1
KK			Ι	1.6								
Kk	6	8.7	4	6.2	5	5.9	7	8.7	10	10.9	12	8.0
Kk	63	91.3	59	92.2	79	94.1	72	91.3	82	89.1	137	92.0
Total	69		64		84		79-		92		149	
X_{1}^{2}		0.15		0.13		0.08		0.17		0.30		0.26
Kidd:												
Jk ^(a+)	43	62.3	51	79.7	58	29.0	54	68.3	25	80.6	99	66.4
Jk ^(a-)	26	37.7	13	20.3	26	31.0	25.	31.7	6	19.3	50	33.6
Total	69		64		84		79		31		149	
Serum												
proteins:												
HP:											-	
1-1	6	9.7	5	8.1	5	6.7	9	12.0	4	4.4	8	5.6
2-1	24	38.7	25	40.3	34	45.3	29	38.7	31	34.5	54	38.0
2-2	32	51.6	32	51.6	36	48.0	37	49.3	55	61.1	80	56.4
Total	69		62		75		75		90		142	
X ² 1		0.22		0.0		0.87		0.77		0.02		0.08
	4.6	76.6	4.5	75.0	50	(5.0	40	72.0	65	72.0	00	70.1
<u>55</u>	40	/6.6	45	/5.0	52	05.8	49	/2.0	00	/3.0	82	/0.1
SF FF	15	21./	15	25.0	24	30.4	1/	25.0	19	21.4	32	21.5
rr r (t	1	1.0		• • •	5	3.8	2	3.0	3	5.0	5	2.0
	00		60		/9		08		89		11/	
		0.0		1.0		0.01		0.12		0.01		0.0
T T:												

Tf ^C	62	100.0	62	100.0	75	100.0	75	100.0	90	100.0	141	99.3
Tf ^{CB}		0.0		0.0		0.0		0.0			1	0.7
Total	62		62		75		75		90		142	
Red cell											у·	
enzymes:												
ADA:											· ·	
1-1	50	89.3	38	80.8	54	77.1	44	70.0	61	79.2	100	73.5
2-1	6	10.7	9	19.2	15	21.4	17	26.9	13	16.9	33	24.3
2-2					1	1.5	2	3.1	3	3.9	3	2.2
Total	56		47		70		63		77		136	
X_{1}^{2}		0.18		0.52		0.0		0.05		0.19		0.02
ESD:												
1-1	41	73.2	45	70.3	58	78.4	53	80.3	58	78.4	87	61.7
2-1	13	23.2	16	25.0	13	17.6	13	19.7	13	17.5	49	34.7
2-2	2	3.6	3	4.7	3	4.0	0		3	4.1	5	3.6
Total	56		64		74		66		74		141	
X_{1}^{2}		0.04		0.09		0.16		0.04		0.22		0.35
PGM ₁ :												
1-1	20	40.8	16	42.1	28	39.3	39	57.3	46	34.1	53	37.3
2-1	21	42.9	14	36.8	37	50.7	21	30.9	29	34.1	66	46.5
2-2	8	163	8	4.1	8	11.0	8	11.8	10	11.8	23	16.2
Total	49		38		73		68		85		142	
X21		0.38		2.0		0.77		3.3		2.41		0.10
AK:												
1-1	46	86.8	58	90.6	78	97.5	68	97.1	71	80.7	126	93.3
2-1	7	13.2	6	9.4	2	2.5	2	2.9	17	19.3	9	6.7
Total	53		64		80		70		88		135	
X_{1}^{2}		0.263		0.154		0.01		0.01		1.00		0.16
6PGD:												
AA	47	94.0	58	98.3	69	100.0	61	96.8	71	92.2	110	92.4
AC	3	6.0	1	1.7			2	3.2	6	7.8	9	7.6
Total	50		59		69		63		77		119	
X_1^2		0.0		0.0		0.0		0.02		0.13		0.18
AP:												
А	2	5.3	2	6.5	5	10.0	3	6.4	4	5	8	6.5
BA	14	36.8	9	29.0	15	30.0	9	19.1	26	29.5	28	22.8
В	18	47.4	19	61.3	22	44.0	26	55.3	58	66.0	81	65.8
СВ	2	5.3	1	3.2	2	4.0	6	12.8			6	4.9
CA	1	2.6			3	6.0	3	6.4				
C	1	2.6			3	6.0	-					
Total	38		31		50		47		88		123	
X_{1}^{2}		1.68		0.70		3.48		2.52		0.24		3.42

Gene	Armenian	Armenian	Armenian	Armenian	Assyrian	Assyrian
	UTUIIIa	Tabilz	Tenran		Tenran	UTUIIIa
n	300	383	203	314	260	222
<i>p</i>	.599	079	034	077	010	.555
p_2	115	105	100	.077	125	.000
y r	305	.103	573	517	577	.119
$\frac{1}{CDa}$.373	.433	378	360	.577	252
aDF	.578	.417	.578	184	132	128
CDE ada	222	.140	242	221	280	240
Cde	.333	.221	.343	.321	.269	.249
cae	.073	.034	.015	.042	.040	.122
	.048		0.1.1			
	.032	.014	.011		.008	.014
						.009
CDe	.001	.134	.091	.084	.078	.109
C De	.010			• • •	• • •	• • •
Cae	.012					
5	.145	.368	.326	.237	.331	.220
S	.684	.523	.564	.537	.570	.627
S ^a	.171	.109	.110	.226	.099	.153
P_1'	.268	.235	.276	.340	.357	.300
$P_2^{\top}P$.732	.765	.724	.660	.643	.700
Lu ^a	.007	.039	.042	.025	.023	.013
Lu ^o	.993	.961	.958	.975	.977	.987
K	.043	.047	023	.044	.054	.040
k	.957	.953	.977	.956	.946	.960
Fy^{a}	.430	.458	.451	.432	.479	.473
Fv^{b}	.430	.417	.484	.432	.501	.461
Fy	.140	.125	.065	.136	.020	.066
Jk^{a}	.386	.549	.444	.438	.560	.421
Jk^{b}	.613	.451	.556	.562	.440	.579
Hp^1	.290	.282	.293	.313	.217	.246
Hp^2	.710	.718	.707	.687	.783	.754
$C3^{\rm s}$.875	.875	.810	.846	.837	.838
$C3^{\rm F}$.125	.125	.190	.154	.163	.162
Tf ^c	1.00	1.00	1.00	1.00	1.00	.996
Tf^{B}						.004
ADA ¹	.946	.904	.879	.833	.877	.857
ADA^2	.054	.096	.121	.167	.123	.143
ESD^1	.848	.828	.872	.902	.872	.791
ESD^2	.152	.172	.128	.098	.428	.209
PGM_1^1	.622	.605	.637	.728	.712	.606
PGM_1^2	.377	.395	.363	372	.283	.394
AK^{1}	.934	.953	.987	.986	.903	.967
AK^2	.066	.047	.013	.014	.097	.033
$6PGD^{A}$.970	.991	1.00	.984	.961	.962
6PGD ^c	.030	.009	.00	.016	.039	.038
AP^{a}	250	210	280	191	193	179
APb	684	774	610	713	807	790
AP ^c	066	016	110	096	.007	024
LDH ^N	1.00	1.00	1.00	1.00	1.00	1.00
MDH ^N	1.00	1.00	1.00	1.00	1.00	1.00
SOD	1.00	1.00	1.00	1.00	1.00	1.00

 Table 2

 Gene Frequencies For Armenian and Assyrian Populations in Iran

In the Rh system, there is significant regional genetic heterogeneity among all six communities ($X^2 = 15.2$, d.f. = 4, P < .01) but not within Armenians or Assyrians ($X^2 = 11.0$, d.f. = 12, NS, and $X^2 = 2.3$, d.f. = 4, NS, respectively) or between the two Christian groups ($X^2 = 28.04$, d.f. = 20, NS). The most common haplotypes encountered in these two populations are CDe (range 34%-45%) and cde (range 22%-34%). The Armenians of Uromia were, however, characterized by a low frequency of cDE and the presence of cdE, C^wDe, and C^wde haplotypes.

For the MNSs system, the anti-M and anti-N sera deteriorated during transport and could not be relied on, so only the Ss results are presented. The Armenians and Assyrians of Uromia showed the lowest frequency of the S gene (15% and 22%, respectively), and there was significant heterogeneity within the former ($X^2 = 18.76$, d.f. = 6, P < .01). In four of the six regional populations, there were individuals showing the S-s- phenotype, giving the rather high S^u gene frequencies ranging from 11% to 23%, slightly higher on average in the Armenians than in the Assyrians. There was no genetic heterogeneity in the P, Lutheran, and Kell systems.

For the Duffy system, this is the first investigation in which both anti- Fy^{a} and anti- Fy^{b} were used. The Duffy gene frequencies in the six groups are similar. The *Fy* gene is present, its frequency being higher in the Armenians than in the Assyrians. The Kidd frequencies show a slightly wider range, the Uromia samples tending to have slightly lower Jk^a frequencies in each population.

Serum Proteins

The large number of studies of the haptoglobin system in Iran show the overall frequency range of the Hp¹ gene to be 20%-36% [6, 7], into which the present frequencies in the Armenians and Assyrians fit well. For transferrin, only one Assyrian of Uromia showed the phenotype BC. The C3 system has been little studied in Iran, the sole report of the C3*F allele frequency for Iranians being 21% [8]. There is no significant heterogeneity among the six groups in this investigation, the C3*F frequency in Assyrians and Armenians ranging from 13% to 19%.

Red Cell Enzymes

For the ADA, ESD, and PGM, systems, the six samples of Assyrians and Armenians showed no significant regional or ethnic heterogeneity. The 6PGD^c gene is missing in Armenians of Tehran and at very low frequency in Armenians of Tabriz, but is at quite a high frequency (4%) in both Assyrian groups. This frequency variation of the PGD^c gene within Armenians and between Armenians and Assyrians is statistically significant ($X^2 = 8.58$, d.f. = 3, P < .05, and $X^2 = 8.27$, d.f. = 1, P < .01). In Armenians, the AK² gene frequency ranges to a significant extent ($X^2 = 8.58$, d.f. = 3, P < .05) from 1% to 7%, but the two Assyrian samples differ significantly from each other ($X^2 = 7.10$, P < .01). For acid phosphatase, again there is significant regional heterogeneity ($X^2 = 20.50$; d.f. = 3, P < .001). There is no genetic variation in the LDH, MDH, and SOD systems.

ESTIMATES OF F-STATISTICS AMONG SIX ARMENIAN AND ASSTRIAN GROUPS (IRAMAN CHRISTIANS)										
			Unweig	hted F _{IS}	Weighted F _{IS}		Fs	ST		
SYSTEM	F _{IT}	X^2	Average	Variance	Average	Variance	Unweighted	Weighted		
Lutheran	.0579	1.79	.0598	.0366	.0517	.0330	0020	.0065		
Kell	.0006	.00	.0131	.0165	0031	.0125	0125	.0037		
Rh(Cc)	.0334	.60	0037	.0212	.0251	.0216	.0370	.0084		
Rh(Ee)	.1791	17.58	.1370	.0592	.1500	.0556	.0487	.0342		
Нр	.0072	.02	.0058	.0038	0000	.0034	.0014	.0073		
C^3	.0388	.71	.0222	.0111	.0308	.0108	.0168	.71		
ADA	.0439	.86	.0155	.0103	.0265	.0092	.0288	.0179		
ESD	.0686	2.24	.0817	.0152	.0649	.0157	0142	.0040		
6PGD	0293	.31	0270	.0001	0295	.0001	0022	.0001		
PGM	.0912	3.78	.1061	.0132	.0860	.0120	0167	.0056		
AK	0458	1.03	0480	.0010	0469	.0010	.0020	.0009		
Mean	.0405		.0329		.0323		.00792	.0088		

 TABLE 3

 ESTIMATES OF F-STATISTICS AMONG SIX ARMENIAN AND ASSYRIAN GROUPS (IRANIAN CHRISTIANS)

Population Structure

To the phenotype and gene frequency findings on these populations may be applied Wright's [9, 10] F statistics. In the majority of genetic systems where the heterozygote is phenotypically distinguishable, the estimates are low positive and the mean F_{IT} , F_{IS} , and F_{ST} are all positive (table 3). The F_{IT} estimate measuring the inbreeding coefficient of an individual relative to the total population of Christians indicates a clear tendency to excess homozygosity, on average some two-thirds that of offspring of first-cousin unions, reflecting the breeding isolation of the Christians as a whole. However, the mean F_{IS} estimate, the coefficient of an individual relative to the subgroup to which he belongs, is nearly as high. This may be a reflection of the small size or relatively closed nature of these local communities or of some practice within them tending to promote consanguineous marriages; the former seems the more likely. Certainly the mean F_{ST} value, measuring the differentiation of subpopulations, is not high, and suggests that the extent of random genetic differentiation among these subpopulations is so far only moderate.

The R matrix of Harpending and Jenkins [11], measuring kinship among the six populations (table 4), uses all the available genetic systems. The elements on its principal diagonal show that the Armenian populations of Tabriz and Isfahan, and the Assyrians from Uromia, are closest to the center of the population cluster, while the Armenians from Uromia and the two samples from Tehran are the most peripheral. The value of R_{ST} calculated from the principal diagonal is 0.0117, slightly higher than Wright's F_{ST} . This difference may well be due to the addition of further systems in the calculation of the R matrix, but the conclusion that the effect of random subpopulation differentiation is only moderate remains unchanged. The elements r_{id} show that the: most closely related pairs are the Armenians from Isfahan and Tehran, followed by the Armenians and Assyrians from Uromia. The least closely related are the Armenians of Uromia to the two Tehran groups. The distance measures calculated from the R matrix (table 5) show the same pattern.

The contribution of particular alleles to this pattern of relationships can be summarized by plotting (fig. 2) the first two eigenvectors of the R matrix superimposed on the S matrix [11]. The position of the Armenians of Uromia is associated particularly with alleles cdE, Jk^b , and

P,; the Armenians of Tehran and Isfahan with Ap^{c} and AK^{1} ; and the Tehran Assyrians with *S*, Jk^{a} , AP^{b} , and AK^{2} . Although there is a suggestion of some contribution of African genes (S^{u} , Fy) particularly to the Armenians, the fact that none of these or other African alleles are situated at peripheral positions and none is particularly characteris tic of any of the six populations suggests that the heterogeneity of the Christian groups owes little to such admixture. In the absence of any other identifiable contributory source, a reasonable interpretation is that the heterogeneity is largely random in origin.

0 0	U		TABLE 4:			
			RMATRIX	,		
	Armenian	Armenian	Armenian	Armenian	Assyrian	Assyrian
	Uromia	Tabriz	Tehran	Isfahan	Tehran	Uromia
	1	2	3	4	5	6
1	0.0161					
2	-0.0032	0.0094				
3	-0.0045	-0.0015	0.0113			
4	-0.0032	-0.0037	0.0030	0.0099		
5	-0.0069	-0.0001	-0.0031	-0.0034	0.0151	
6	0.0018	-0.0009	-0.0051	-0.0027	-0.0016	0.0086

NOTE: $R_{ST} = 0.011718$.

DISCUSSION

A few blood group data on Armenians and Assyrians are available from other studies in Iran and neighboring countries. A comparison with the present re sults confirms that the Armenians and Assyrians as a whole are characterized by a high A gene and cde haplotype frequency [12].

DISTANCE MATRIX $^{2}ij = ri + rjj \Box 2rij$										
	Armenian	Armenian	Armenian	Armenian	Assyrian	Assyrian				
	Uromia	Tabriz	Tehran	Isfahan	Tehran	Uromia				
	1	2	3	4	5	6				
1	0.0000									
2	0.0318	0.0000								
3	0.0364	0.0237	0.0000							
4	0.0324	0.0266	0.0151	0.0000						
5	0.0450	0.0247	0.0326	0.0319	0.0000					
6	0.0210	0.0198	0.0301	0.0239	0.0268	0.0000				

Table 5DISTANCE MATRIX $^{2}ij = ri + rjj \Box 2rij$

^{1 -} Armenian Uromia 2 - Armedian Tabriz 3 - Armenian Tehran 4 - Armenian Isfahan 5 - Assyrian Tehran 6 - Assyrian Uromia

Fig. 2.--The locations of the six populations on the genetic map and the extent to which each allele contributes to them.

The small size of each local sample implies fairly large errors attaching to the gene frequency estimates, which must to some extent obscure the relationships among the group. However, the first two eigenvalues of the R matrix account for 63% (35% and 28%) of the total variation so an attempt at interpretation appears reasonable.

The extent of genetic variation among the different regional groups of Armenians and Assyrians and between the two Christian groups is well demonstrated by the range of gene frequencies in almost all the genetic systems here studied, in several of which, although they are not massive, these differences attain statistical significance. The differences between the rural and urban populations of Uromia and Tehran are distinct in both the Assyrians and the Armenians and contribute appreciably to this heterogeneity, but while the two Uromia groups are quite close to each other and the two Tehran groups are less so, the heterogeneity that is observed suggests a cluster of genetically similar but slowly diversifying populations and that in this diversification process the effect of urbanization in Tehran, and concomitant gene flow or possible differential selection, contributes appreciably. The systems in which this diversification is particularly apparent are Rhesus, S, ESD, $PGM_1 AK$, and AP.

In Iran there are as yet no data available on genetic differentiation and genetic distance, against which these estimates for the Christian population can be compared. The F_{ST} estimates vary from locus to locus, but the mean, like the estimate of R_{ST} , indicates modest but definite differentiation in blood polymorphisms. The level is similar to that found in interstate and intrastate subpopulation comparisons in India [13], less than in the ethnically diverse populations of South Africa [11], South American Indians [14, 151, and the Papago Indians [16], but considerably higher, by factors of some 3-6, than among subpopulations of Cumbria in north-west England [17]. The estimates are very unusual, however, in that the F_{ST} figures are so much lower than the F_{IS} . One possible explanation is active migration between the communities, restraining the differentiation process, and it is unfortunate that data on migration were not collected during this survey to quantify the effect of marital interchange.

CONCLUSION

Until such time as migration, isolation by distance, and larger samples for gene frequency estimation are studied explicitly, the conclusion must remain tentative. But the impression left by the work so far is of a cluster of genetically similar but slowly diversifying populations and that in this diversification process the effect of urbanization in Tehran, and concomitant gene flow or possible differential selection, contributes appreciably.

REFERENCES

1. NIJENHUIS LE: Blood group frequencies in Iran. Vox Sang 9:723-740, 1964

2. BOWMAN JE, WALKER DG: Virtual absence of glutathione instability of the erythrocytes among Armenians in Iran. Nature 191:221-222, 1961

3. TABATABAEE H: Comparative genetic investigation of the Iranian Armenians and Jews. M.Sc. thesis, University of Tehran, 1977

4. HARRIS H, HOPKINSON DA: Handbook of Enzyme Electrophoresis in Human Genetics. Amsterdam, North-Holland, 1976

5. PAPIHA SS, BERNAL JE, MEHROTRA M: Genetic polymorphisms of serum proteins and levels of immunoglobulin and complement components in a high caste community (Brahmin) of Madhya Pradesh, India. Jpn J Hum Genet 25:1-8, 1980

6. KIRK RL, KEATS B, BLAKE NM, ET AL.: Genes and people in the Caspian littoral: a population genetic study in northern Iran. Am J Phys Anthropol 46:377-390, 1977 7. BAJATZADEH M, WALTER H: Serum protein polymorphisms in Iran. Humangenetik 6:40-54, 1982

8. FARHUD DD, WALTER H: Polymorphism of C'3 in German, Bulgarian, Iranian and Angola populations. Humangenetik 17:161-164, 1973

9. WRIGHT S: Isolation by distance. Genetics 28:116-138, 1943

10. WRIGHT S: The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395-420, 1965

11. HARPENDING HC, JENKINS T: Genetic distance among South African populations, in Methods and Theories of Anthropological Genetics, edited by CRAWFORD MH, WORKMAN PL, Albuquerque, Univ. of New Mexico Press, 1973, pp 177-199

12. IKIN EW, MOURANT AE, LEHMANN H: The blood groups and haemoglobins of the Assyrians of Iraq. Man 65:110-111, 1965

13. PAPIHA SS, MUKERJEE BN, CHAHAL SMS, MALHOTRA KC, ROBERTS DF: Genetic heterogeneity and population structure in northwest India. Ann Hum Biol 9:235251, 1982

14. GERSHOWITS H, NEEL JV: The immunoglobulin allotypes (Gm and Km) of twelve Indian tribes of Central and South America. *Am J Phys Anthropol* 49:289-302, 1978

15. SALZANO FM: Interpopulation variability in polymorphic systems, in The Role of Natural Selection in Human Evolution, edited by SALZANO FM, New York, American Elsevier, 1975, pp 217-220

16. WORKMAN PL, HARPENDING H, LALOUEL JM, LYNCH C, NISWANDER JD, SINGLETON R: Population studies in southwestern Indian tribes: VI. Papago population structure, a comparison of genetic and migration analyses, in Genetic Structure of Populations, edited by MORTON NE, Honolulu, Univ. of Hawaii Press, 1973, pp 166-194

17. ROBERTS DF, JORDE LJ, MITCHELL RJ: Genetic structure in Cumbria. J Biosoc Sci 13:317-336, 1981

¹ Department of Human Genetics, University of Newcastle upon Tyne, England.

² Department of Human Genetics, University of Newcastle upon Tyne, England.

³ Department of Human Genetics, University of Newcastle upon Tyne, England.

⁴ School of Public Health, University of Tehran, Iran.